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Big Data Get Together	
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Obvious, but worth reminding 	

•  Big science begets big data, and	

–  Big data analysis needs big science resources	


•  Data analysis is data intensive.	

– Data intensity = data movement.	


•  Big data movement is hard fun.	

–  Embarrassingly parallel and MapReduce are limited.	


•  Most analysis algorithms are not up to the 
challenge	

–  Either serial, or 	

– Communication, I/O are scalability killers	
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There is hope.	
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Parallel Time-Varying Flow Analysis	


Approach	


-In core / out of core processing 
of time steps	

-Simple load balancing (multiblock 
assignment, early particle 
termination)	

-Adjustable synchronization 
communication 	


Collaboration with the Ohio State University	
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Pathline tracing of 32 time-
steps of combustion in the 
presence of a cross-flow in 
S3D (in collaboration with 
Jackie Chen, Hongfeng Yu, 
Janine Bennett, Ray Grout)	


Parallelization within epochs and 
serialization across epochs adds 
greater flexibility.	


Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields, IPDPS 
‘11	




Parallel Particle Tracing	


Particle tracing of ¼ million particles in Nek5000 20483 thermal hydraulics dataset results 
in strong scaling to 32K processes and an overall improvement of 2X over earlier 
algorithms (In collaboration with Paul Fischer and Aleks Obabko)	
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Parallel Topological Analysis	


- Transform discrete scalar field into Morse-Smale complex	

-Nodes are minima, maxima, saddle points of scalar values	

- Arcs represent constant-sign gradient flow	

- Used to quickly see topological structure	


Two levels of simplification of 
the Morse-Smale complex for jet 
mixture fraction.	


Collaboration with SCI Institute, University of Utah	


Example of computing discrete gradient and Morse-Smale Complex	


1	
 2	


3	
 4	


Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, IPDPS ‘12	
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Parallel Morse-Smale Complex	


Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability 
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	
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Parallel Voronoi Tessellation	


Approach	


-Compute parallel Voronoi tessellation in situ	

-Compute connected components of threshold-filtered Voronoi cells to identify cosmological 
voids	


-Time-varying tessellations help scientists understand feature evolution	


Deriving a dense mesh representation from a sparse N-body particle simulation allows scientists to 
conduct novel analyses not possible with the original data, because particle density is now a continuous 
function that can be computed everywhere in the field. The Voronoi tessellation is ideal for cosmological 
data because it self-adapts to widely varying particle distributions. 	


Applying threshold filtering on cell volume and forming connected components of remaining Voronoi cells locates cosmological voids.	


Collaboration with Salman Habib, Katrin Heitmann, and the HACC cosmology group  (HEP, MCS, ALCF divisions of 
ANL)	
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Parallel Information Entropy	


Computation of information entropy in 126x126x512 
solar plume dataset shows 59% strong scaling efficiency.	
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Black Box Parallelism	
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Fortunately, a variety of different parallel analyses have common 
data needs.	


You do this yourself with the help of serial 
libraries such as OSUFlow, Qhull, VTK (don’t 
have to start from scratch)	


DIY does this for 
you	


Analysis	   Applica+on	   Applica+on	  
Data	  Model	  

Analysis	  
Algorithm	  

Par$cle	  Tracing	   CFD	   Unstructured	  
Mesh	  

Numerical	  
Integra$on	  

Informa$on	  
Entropy	  

Astrophysics	   AMR	   Convolu$on	  

Morse-‐Smale	  
Complex	  

Combus$on	   Structured	  
Grid	  

Graph	  
Analysis	  

Computa$onal	  
Geometry	  

Cosmology	   Par$cles	   Voronoi	  
Tessella$ons	  

Communica+on	   Addi+onal	  

Nearest	  
neighbor	  

File	  I/O,	  
Domain	  
decomposi$
on,	  process	  
assignment,	  
u$li$es	  

Global	  
reduc$on,	  
nearest	  neighbor	  

Global	  reduc$on	  

Nearest	  
neighbor	  
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Draw a line between user space and 
data space.	


•  Let users do what they do best	

ie, custom serial analysis	


• Let DIY do what it does best	

ie, data parallelization	
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DIY is that common data library.	


DIY usage and library organization	


Features	

-Parallel I/O to/from storage	

-Domain decomposition	

-Network communication	

-Written in C++ w/ C bindings, 
called from Fortran, C, C++	


-Autoconf build system	

-Lightweight: libdiy.a 800KB	

-Maintainable: ~15K lines of 
code	


Main Ideas and Objectives 	

-Large-scale data-parallel analysis 
(visual and numerical)	

-For scientists, visualization 
researchers, tool builders	


-In situ, coprocessing, postprocessing	

-MPI + threads hybrid parallelism	

-Scalable data movement algorithms	

-Runs on Unix-like platforms, from 
laptop to supercomputer (including 
all IBM and Cray HPC leadership 
machines)	


Benefits	

-Researchers can focus on their 

own work, not on parallel 
infrastructure	


-Analysis applications can be 
custom	

-Reuse core components and 
algorithms for performance and 
productivity	
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Usage	
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Examples	

•  Block I/O	


–  Reading data, writing analysis results	

•  Static	


–  Merge-based reduction	

–  Swap-based reduction	

–  Neighborhood exchange	


•  Time-varying	

–  Neighborhood exchange	


•  Spare thread	

–  Simulation and analysis overlap	


•  MOAB	

–  Unstructured mesh data model	


•  VTK	

–  Integrating DIY communication with VTK 

filters	

•  R	


–  Integrating DIY communication with R 
stats algorithms	
 Basic flow of a DIY’ed program	
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Example Usage	


// initialize	

int dim = 3; // number of dimensions in the problem	


int tot_blocks = 8; // total number of blocks	

int data_size[3] = {10, 10, 10}; // data size	


MPI_Init(&argc, &argv); // init MPI before DIY	

DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nblocks, 

data_size, MPI_COMM_WORLD);	


// read data	

 for (int i = 0; i < nblocks; i++) {	


    DIY_Block_starts_sizes(i, min, size);	

    DIY_Read_add_block_raw(min, size, infile, MPI_INT, (void**)&(data[i]));	


}	

DIY_Read_blocks_all();	


// decompose domain	

int share_face = 0; // whether adjoining blocks share the same face	


int ghost = 0; // additional layers of ghost cells	

int ghost_dir = 0; // ghost cells apply to all or some sides of a block	


int given[3] = {0, 0, 0}; // constraints on blocking (none)	

DIY_Decompose(share_face, ghost, ghost_dir, given);	
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Example API Continued	


// your own local analysis	


// merge results, in this example	

// could be any combination / repetition of the three communication patterns	


int rounds = 2; // two rounds of merging	

int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge	


int nb_merged; // number of output merged blocks	

DIY_Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values, 
&MergeFunc, &CreateItemFunc, &DeleteItemFunc, &CreateTypeFunc, &num_out_blocks);	


// write results	

DIY_Write_open_all(outfile);	

DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype);	

DIY_Write_close_all();	


// terminate	

DIY_Finalize(); // finalize DIY before MPI	


MPI_Finalize();	
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Summary	
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Benefits	

•  Productivity	


–  Express complex algorithms	

•  Multiple blocks per process	

•  Neighbor inclusion	

•  Complete / partial reductions	

•  Neighborhood communication pattern	


–  Simplify existing tasks	

•  Custom data type creation	

•  Compression	


•  Performance	

–  Published scalability	

–  Configurable algorithms	
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To Do: Research Directions	

•  Advanced decomposition	


–  Block groups	

•  More / better low-level communication algorithms	


–  Less synchronous, more overlap with computation	

–  Point to point between blocks	


•  High-level communication operations	

–  Ghost cell exchange	

–  Kernel convolution (stencil)	


•  Load balancing and Resiliency	

–  Block overloading	

–  Dynamic reassignment	


•  Keeping up with new developments	

–  Programming models	


•  MPI + X, MPI-3	

–  Architectures	


•  Mira, Titan	
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Resources	

•  Software	


–  https://svn.mcs.anl.gov/repos/diy/trunk	

•  Publications	


–  Peterka et al., Scalable Parallel Building Blocks for 
Custom Data Analysis, LDAV'11.	


–  Peterka et al., T., Versatile Communication Algorithms 
for Data Analysis, IMUDI'12.	


–  Gyulassy et al.,  The Parallel Computation of Morse-
Smale Complexes, IPDPS'12.	


–  Peterka et al.,  A Study of Parallel Particle Tracing for 
Steady-State and Time-Varying Flow Fields, IPDPS'11. 	


•  More info	

–  tpeterka@mcs.anl.gov	

–  www.mcs.anl.gov/~tpeterka	
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